Dalton Classes

pH & Buffer

<u>Ionic Product of Water</u> (K_w):

Water is weak electrolyte.

$$H_2O - H^+ + OH^-$$

 $K = \frac{[H^+] [OH^-]}{[H_2O] \approx \text{const as } H_2O \text{ is weak electrolyte}}$

So K.
$$[H_2O] = \text{new const} = [H^+][OH^-]$$

This new const is ionic product (K_w) of water.

i.e
$$K_W = [H^+][OH^-]$$

The product of [H⁺] & [OH⁻] is constant at a particular temperature and it is called ionic product of water.

 $K_w = 10^{-14}$ at 25°C; K_w changes only with temp.

- To convert [H⁺] of fractional data i.e. 10^{-1} (M) to 10^{-14} (M) into the integral values, Θ ve logarithmic operation is done on the fractional (dilute) molar concentration of H⁺ ions.
- ⊖ ve logarithm is designated as "p". pH is an abbreviation for "power of hydrogen" where "p" is short form the German word for power, *potenz* and H is the element symbol for hydrogen.

$$-\log [H^+] = pH$$

$$pH = -\log[H^+] = 1, \quad 2, \quad 3, \dots \underbrace{7,} \quad 8 \dots \underbrace{14}$$

$$acidic \quad Neutral \quad basic$$

This pH scale is only at 25 °C

 $K_{w} = [H^+][OH^-]$

-
$$\log K_w$$
= - $\log [H^+]$ - $\log [OH^-]$

$$pK_w = pH + pOH = 14 [pK_w = - log 10^{-14} = 14]$$

i.e pH = pOH = 7 for water

Is it possible to have (-)ve pH of any solution?

Ans. pH scale is used to convert fractional dilute concentrations into integral values but if it is applied on integral concentration, then pH may be Θ ve or zero also

pH of 2 (M) HCl
$$\Rightarrow$$
 - log 2 = \ominus ve
1 (M) HCl \Rightarrow - log 1 = 0

- pH of boiled water < 7 is it acidic?
- pH < 7 acidic; pH > 7 alkaline & pH = 7 neutral this scale is only at 25° C temp. So for boiled water i) i.e at 100° C temp. This scale is changed i.e. < 7 or > 7 pH may be neutral.
- $H^++OH^- \rightarrow H_2O$ This acid-base neutralization reaction is always <u>exothermic</u> so dissociation of water ii) into H⁺ & OH⁻ must be **endothermic** in nature.

$$H_2O \longrightarrow H^+ + OH^- \text{ (endo)}$$

So under hot / boiled condition forward rate i.e. ionization of H₂O increases, so [H⁺] increases i.e. pH decreases but at the same time [OH⁻] also increases in the same ratio so it remains neutral.

• pH of ice > 7 - is it alkaline?

same type answer

• Calculation of pH of dilute mono basic strong acid.

Ex.
$$10^{-2}$$
(N) HCl, 10^{-2} (N) HCl = 10^{-2} (M)
As HCl is strong acid, [HCl] = [H⁺] = [Cl⁻]
i.e. [H⁺] = 10^{-2} (M)
pH = - log [H⁺] = - log 10^{-2} = 2

• Calculation of pH of dilute poly basic strong acid.

Ex.
$$10^{-2}$$
(N) H₂SO₄

$$10^{-2}(N) H_2SO_4 = \frac{10^{-2}}{\text{basicity}} = \frac{10^{-2}}{2} (M) H_2SO_4$$

$$[H^+] = 2 \times \frac{10^{-2}}{2} = 10^{-2} (M)$$

$$\therefore pH = 2$$

• Calculation of pH of dilute mono acidic strong alkali

Ex
$$10^{-2}$$
(N) NaOH

$$10^{-2}$$
(N) NaOH = 10^{-2} (M) NaOH

$$[OH^{-}] = 10^{-2}(M)$$

So, pOH =
$$-\log 10^{-2} = 2$$

Again
$$pH + pOH = 14$$

So,
$$pH = 14 - pOH = 14 - 2 = 12$$

• Calculation of pH of dilute weak acid

$$HA \longrightarrow H^+ + A^-$$

c = molar concentration

$$c(1-\alpha)$$
 $c\alpha$ $c\alpha$

 α = degree of dissociation.

$$[H^+] = c\alpha = 10^{-2} \text{ x } \frac{20}{100}$$

$$pH = -\log (10^{-2} \times 0.2) = 2 - \log 0.2$$

Ex
$$10^{-2}$$
(N) CH₃COOH (pKa = 4.76)

$$HA \longrightarrow H^+ + A^-$$

c = concentration of acid

$$c(1-\alpha)$$
 $c\alpha$ $c\alpha$

 α = degree of ionization for 1 mole HA

$$K_a = \frac{[\mathrm{H}^+] [\mathrm{A}^-]}{[\mathrm{HA}]} = \frac{c\alpha \, . \, \ell\alpha}{ \ell (1-\alpha)} = \frac{c\alpha^2}{1-\alpha} \approx c\alpha^2 \qquad \alpha << 1$$

$$\alpha = \sqrt{\frac{Ka}{c}} \quad ... (i) \qquad 1 - \alpha \approx 1$$

$$[H^+] = c\alpha = c\sqrt{\frac{Ka}{c}} = \sqrt{K_a.c}$$

$$\begin{split} pH &= -log \sqrt{K_a.c} \ = - \ \frac{1}{2}log \ K_a - \ \frac{1}{2}log \ c \\ \hline pH &= \frac{1}{2} \ pKa \ - \ \frac{1}{2}log \ c \\ pH &= \ \frac{1}{2} \ x \ 4.76 - \frac{1}{2}log \ 10^{-2} \\ &= \ \left(\frac{4.76}{2} + \frac{2}{2}\right) = 1 + \frac{4.76}{2} \end{split}$$

• Calculation pH of very dilute acid / alkali

Ex
$$10^{-8}$$
 (N) HCl

It is too dilute, so [H⁺] from water should not be neglected

$$[H^{+}]_{\mathbf{t}} = [H^{+}]_{\mathbf{a}} + [H^{+}]_{\mathbf{W}}$$

$$= 10^{-8} + 10^{-7}$$

$$= 10^{-7} (10^{-1} + 1) = 1.1 \times 10^{-7}$$

$$pH = -\log (10^{-7} \times 1.1) = 7 - \log 1.1 \approx 6.96$$

Ex
$$10^{-8}$$
 (N) NaOH = 10^{-8} (M) NaOH

It is too dilute, so [H⁺] from water should not be neglected

$$[OH^{-}]_{\mathbf{t}} = [OH^{-}]_{\mathbf{b}} + [OH^{-}]_{\mathbf{W}}$$

= $(10^{-8} + 10^{-7}) = 10^{-7} (1.1)$
pOH = $7 - \log 1.1 = 6.96$
pH = $14 - 6.96 = 7.04$

Mixing Problems:

Q. Calculate the pH value of a solution obtained by mixing 50 ml of 0.2 (N) HCl with 50 ml of 0.1 (N) NaOH.

Ans. $50 \text{ ml } 0.2 \text{ (N) HCl} \equiv (50 \times 0.2) = 10 \text{ ml } 1 \text{ (N) acid}$

50 ml 0.1 (N) NaOH (50 x 0.1) = 5 ml 1 (N) base

So after mixing 5 ml 1 (M) acid remains in excess.

Total volume = 50 + 50 = 100 ml

: New resulting solution: 100 ml S (N) \equiv 5 ml 1 (N) acid

∴S =
$$\frac{5 \times 1}{100}$$
 = $\frac{1}{20}$ (N) acidic reaction

So, pH =
$$-\log \frac{1}{20} = -\log 0.05 = 1.30$$

Q. What will be the pH of a solution obtained by mixing 800 ml of 0.05 (N) NaOH and 200 ml of 0.1 (N) HCl.

Ans. $800 \text{ ml } 0.05 \text{ (N) NaOH} \equiv (800 \text{ x } 0.05) = 40 \text{ ml } 1 \text{ (N) base}$

200 ml 0.1 (N) HCl
$$\equiv$$
 (200 x 0.1) = 20 ml 1 (N) acid

i.e after mixing (40 - 20) = 20 cc 1 (M) base is in excess.

But total volume = (800 + 200) = 1000 ml

 \therefore 1000 x S_{final} = 20 x 1 (N)

$$S_f = \frac{2\theta}{1000} = \frac{1}{50} (N) = 0.02 (N)$$

So pOH =
$$-\log 0.02$$
 i.e pH = $14 - pOH = (14 + \log 0.02) = 12.3$

Q. How many moles of $Ca(OH)_2$ must be dissolved to produce 250 ml. of an aqueous solution of pH = 10.65?

Ans. pH =
$$10.65$$
 so pOH = $14 - 10.65 = 3.35$
 $[OH^{-}]_{solution} = 10^{-3.35} = 10^{-14} \times 100.65$
= $10^{-4} \times 4.466$
= 4.466×10^{-4} (M)

One molecule of Ca(OH)₂ produces 2 OH⁻ ions

i.e.1000 C.C. solution needs 2.235×10^{-4} (M) Ca(OH)₂ to produce pH = 10.65

250 C.C. solution needs $\frac{2.235}{4}$ x 10^{-4} = 5.58 x 10^{-5} moles

Q. The pH of 0.1 (M) HCN is 5.2. Calculate its K_a

Ans.
$$pH = \frac{1}{2} pK_a - \frac{1}{2} \log c$$
 $2 \times pH = pK_a - \log c$ $5.2 = \frac{1}{2} pK_a - \frac{1}{2} \log 10^{-1}$ $5.2 \times 2 = pK_a + 1$ $pK_a = 10.4 - 1 = 9.4$; $-\log K_a = 9.4$ $K_a = anti \log (-9.4)$ $\log K_a = -9.4$ $K_a = 3.98 \times 10^{-10}$

Q. What is the [H+] of 0.1 (N) CH₃COOH ? Calculate pH ? $K_a = 1.8 \times 10^{-5}$

Ans.
$$\alpha = \sqrt{\frac{Ka}{c}} = \sqrt{\frac{1.8 \times 10^{-5}}{0.1}}$$

$$[H^+] = c\alpha = \sqrt{K_a.c} = \sqrt{1.8 \times 10^{-5} \times 0.1}$$

$$= \sqrt{1.8 \times 10^{-6}}$$

$$= 1.34 \times 10^{-3} \text{ M}$$

$$pH = -\log(1.34 \times 10^{-3}) = 3 - \log 1.34$$

$$= 2.87$$

Q. 10 C.C. 10^{-2} (N) HCl is titrated by 10^{-2} (N) NaOH. Calculate pH at the following stages :

i) Before adding alkali

ii) 2 C.C. alkali is added

iii) 5 C.C. alkali is added

iv) 9 C.C. alkali is added

v) 9.9 C.C. alkali is added

vi) 10.0 C.C. alkali is added

vii) 10.1 C.C. alkali is added

Draw a plot of pH vs. volume of alkali & extend the idea for all sorts of acid-base titration & comment on the choice of indicator.

Ans. i) Before adding alkali:

$$10^{-2}$$
 (N) HCl ≡ 10^{-2} (M) HCl ≡ 10^{-2} (M) H[⊕] [strong acid]
∴ pH = $-\log 10^{-2} = 2$

ii) 2 C.C. alkali is added:

2 c.c. 10^{-2} (N) NaOH consumes 2 c.c. 10^{-2} (N) HCl Remaining acid = 8 c.c. 1^{-2} (N) HCl

As the salt so formed is NaCl (SA + SB) it cannot change the pH of the medium so pH is due to HCl only

[Acid] =
$$\frac{8 \times 10^{-2}}{12}$$
 Total volume
pH = $-\log (H^{+})$ = $-\log \frac{2 \times 10^{-2}}{12 \times 3}$
= $2 - \log \frac{2}{3} = 2.176$

iii) 5 C.C. NaOH is added:

$$pH = -\log \frac{5 \times 10^{-2}}{15} = 2.477$$

iv) 9 C.C. NaOH is added:

$$pH = -\log \frac{1 \times 10^{-2}}{19} = 3.278$$

v) 9.9 C.C. NaOH is added:

$$pH = -\log \frac{0.1 \times 10^{-2}}{19.9} = 4.298$$

vi) 10 C.C. NaOH is added:

pH = 7 as total salt is NaCl which is salt of strong acid & strong base i.e. pH = 7

vii) 10.1 C.C. NaOH is added:

$$pH = 14 + log \frac{0.1 \times 10^{-2}}{20.1} = 9.696$$

$$Plot$$

$$I - II \longrightarrow SA + SB \\
III - IV \longrightarrow WA + WB \\
I - IV \longrightarrow SA + WB \\
III - III \longrightarrow WA + SB$$

$$\bullet \text{ That is for SA + SB pH group is maximum at the vicinity of end-pt.}$$

Indicators are generally organic weak acids or base. Say, consider it is HIn. It ionizes as:

$$\begin{split} &HIn \stackrel{\longleftarrow}{\longleftarrow} H^{+} + In^{-} \\ &K_{In} = [H^{+}] [In^{-}] / [HIn] \\ &-log \ K_{In} = -log \ [H^{+}] - log \ [In^{-}] / [HIn] \\ &pK_{In} = pH - log \ [In^{-}] / [HIn] \\ &pH = pK_{In} + log \ [In^{-}] / [HIn] \end{split}$$

Those indicators are accepted where the colour of molecular form and that of ionic form are different. There is a sensitivity factor for human eye to detect the change in colour over another. The concentration difference should be at least 10 times different to detect the change in colour.

If $[In^-] / [HIn] = 10 \rightarrow Colour of In^- is detected.$

If $[In^-] / [HIn] = 1/10 \rightarrow Colour of HIn is detected.$

So, to detect the visual change in colour by human eye the range of pH of an indicator will be

$$pH = pK_{In} \pm log 10$$

$$pH = pK_{In} \pm 1$$

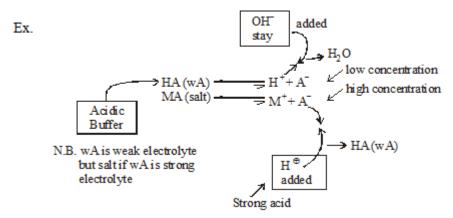
If this range of pH resides within the range of pH at the vicinity of end point of titration, that indicator is chosen for that titration.

So, for SA-SB titration \rightarrow any kind of indicator can be used because range of pH at the vicinity of end point is maximum.

For SA-WB titration → Indicator which ionizes in acid medium can be used like methyl orange.

For WA-SB titration → Indicator which ionizes in basic medium can be used like phenolphthalein

For WA-WB titration → No suitable Indicator is found.


Buffer Solution

Definition: A mixture of weak acid & its salt or weak base & its salt which can resist the change in pH by adding a little amount of acid or alkali is called acidic or alkaline buffer respectively.

Ex.
$$CH_3COOH(WA) + CH_3COONa$$
 \longrightarrow acidic buffer $NH_4OH(WB) + NH_4Cl$ \longrightarrow basic buffer

• Buffer action:

The mechanism by which a solution can resist the change in pH is called buffer action of that buffer.

- I. After adding a few drop of S.A. it is internally converted into W.A. i.e. lowering of pH is not significant.
- II. After adding a few drops of S.B it reacts with H^{\bigoplus} from HA (WA) to form equivalent amount of H_2O (neutral). i.e. to compensate the loss of $[H^+]$ molecular HA further ionizes i.e [HA] reduces & again as H_2O is formed total volume also increases i.e. [MA] also decreases.

i.e $\frac{[MA]}{[HA]}$ ratio remains almost unaltered.

 $i.e \ pH = pK_a + log \quad \frac{[Salt]}{[Acid]} \ equation \ tells \ us \ pH \ remains \ almost \ const.$

⇒ the above two explanations tells us <u>acidic buffer</u> is a best buffer towards alkali and acidic buffer exhibits bad bufferial action towards acid.

• Buffer Capacity:

Definition: The amount of base (b) added to create unit change of pH is called buffer capacity (β) of that buffer.

So,
$$\beta = \frac{db}{d(pH)}$$

Say, d(pH) = 1; $\beta = db$

Say, a cc S(N) weak acid is added with b c.c. S(N) strong base & a > b.

[Salt] =
$$\frac{b \times s}{(a+b)}$$
; [Acid] = $\frac{(a-b) s}{(a+b)}$

By Henderson equation

$$pH = pK_{a} + log \frac{[Salt]}{[Acid]} = pKa + log \frac{b \times (a+b)}{(a+b)(a-b) \times}$$

$$pH = pK_{a} + log \frac{b}{(a-b)}$$

$$pH = pK_{a} + 2.303 \ln \frac{b}{(a-b)}$$

$$ln = log_{e}$$

$$\frac{d(pH)}{db} = 2.303 \frac{(a-b)}{b} \left[\underbrace{(a-b) \cdot 1 + b'}_{(a-b)^{2}} \right]$$

$$\frac{d(pH)}{db} = 2.303 \frac{a}{b(a-b)}$$

$$\beta = \frac{db}{d(pH)} \frac{1}{2.303} \frac{b(a-b)}{a}$$

$$\frac{d\beta}{db} = \frac{1}{2.303} \cdot [b \times -1 + (a-b) \cdot 1]$$

$$\frac{d\beta}{db} = \frac{1}{2.303} = \frac{(a-2b)}{a}$$

$$If b = \frac{a}{2}, \frac{d\beta}{db} = 0$$

$$\frac{d^{2}\beta}{db^{2}} = (-) \text{ ve i.e. } b = \frac{a}{2} \text{ it is the condition of maxima.}$$

Conclusion: β is maximum at $b = \frac{a}{2}$. i.e for any buffer, buffer capacity (β) is maximum at half neutralization point.

So,
$$\beta_{\text{max}} = \frac{1}{2.303} \times \frac{a^2}{4.a} = \frac{1}{2.303} \cdot \frac{a}{4}$$

$$\beta_{\text{max}} = \frac{1}{2.303} \cdot \frac{a}{4}$$

Q1. $100 \text{ cc } \left(\frac{N}{10}\right) \text{ CH}_3\text{COOH} + 50 \text{ cc } \left(\frac{N}{10}\right) \text{ NaOH} \Rightarrow \text{pH ? & comment on its Buffer capacity.}$

pH = 4.76 + log
$$\frac{50 \times \frac{1}{10}}{150}$$

$$\frac{50 \times \frac{1}{10}}{150}$$